
Ecology and Evolution. 2019;9:251–264.	 		 	 | 	251www.ecolevol.org

1  | INTRODUC TION

Ecological niche models, also known as habitat suitability mod-
els (HSMs), or species distribution models (SDM), have been used 
to generate maps of potential species habitat (Elith et al., 2011; 
Franklin, 2010). These models have also been used for conservation 
and restoration ecology (Elith & Leathwick, 2009), identifying poten-
tial hot spots for invasive species (Evangelista et al., 2008; Jarnevich 
& Reynolds, 2011), and locating rare and endangered species (Guisan 
et al., 2006).

HSMs attempt to represent the correlation between envi-
ronmental variables and existing species’ locations (occurrence 
points). The environmental variables, also known as covariates, can 
be represented by a wide variety of parameters including tempera-
ture, precipitation, elevation, and slope. HSMs typically generate 
a georeferenced image, referred to as a raster where each pixel 
within the raster contains a value from 0 (unsuitable habitat) to 
1 (suitable habitat) (Franklin, 2010). The occurrences and envi-
ronmental variables utilized can contribute uncertainty to HSMs 
(Barry & Elith, 2006).

1.1 | Occurrence uncertainty

All occurrence data contain uncertainty from a variety of sources of 
error and inherent variability in the modeling process. Because oc-
currences are observations of a species’ presence at a specific point 
in time, the uncertainty can include the following: species identifi-
cation, coordinate uncertainty, and temporal uncertainty (Barrows, 
Preston, Rotenberry, & Allen, 2008; Elith, Burgman, & Regan, 2002; 
Peterson et al., 2011). Coordinates collected with a geographic posi-
tioning system (GPS) handheld will have an error between 3 meters 
and 10 s of meters (USDOD, 2008; Wing, Eklund, & Kellogg, 2005) 
which will have little impact on most HSMs. However, other coor-
dinates, such as those computed from natural history collections, 
may be off by 10 s of kilometers (Wieczorek, Guo, & Hijmans, 2004) 
which can increase the uncertainty of model outputs (Moudrý & 
Šímová, 2012).

HSMs can underrepresent the potential distribution of a spe-
cies if the occurrence data that is used to create the model do 
not represent the full environmental range of a species (Thuiller, 
Brotons, Araújo, & Lavorel, 2004). This can be caused by a lack of 
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observations of a species’ presence, or to barriers, such as a moun-
tain range, that have prevented the species from dispersing to oth-
erwise suitable habitat (Pearson, 2010). Sampling bias occurs when 
some areas are sampled more than others (Anderson & Gonzalez, 
2011). Additionally, occurrence data may be biased by effects such 
as sampling more frequently near roads, which can bias the esti-
mated niche (Anderson & Gonzalez, 2011; Kadmon, Farber, & Danin, 
2004; Phillips et al., 2009).

1.2 | Environmental variable uncertainty

Environmental variables come from a wide range of sources and 
contain varying levels of uncertainty. Environmental variables used 
in HSMs are typically represented by grids of pixels or raster data 
that contain measurements of that environmental variable. These 
variables can include, but are not limited to the following: climate 
(temperature, precipitation, humidity), topography (elevation, slope, 
aspect, roughness), and proximity (distance to streams, distance to 
roads; Franklin, 2010).

Each pixel of an environmental variable contains a single value 
representing a complex spatial area on the ground (Pixel Mixing; 
Cracknell, 1998). Further, one pixel cannot represent microclimate 
temporal dynamics (Kearney et al., 2014). Small habitats, such as 
refuges for species, may therefore be underrepresented, or not 
represented at all (Gottschalk, Aue, Hotes, & Ekschmitt, 2011). 
Environmental variables such as temperature and precipitation can 
also represent periods of time that may not correlate well with spe-
cies establishment (Roubicek et al., 2010). These sources of error 
can contribute to a misleading sense of confidence in model out-
puts when model uncertainty is not presented (Gould et al., 2014).

Information on uncertainty in environmental variables may be 
available only as summary information across the entire environ-
mental variable, or not at all. This error may be available as a range 
(Hijmans, Cameron, Parra, Jones, & Jarvis, 2005), squared-error 
terms (Hutchinson et al., 2009), or more complex distributions 
(Kimble, 2016).

1.3 | Visualizing uncertainty with Monte Carlo 
methods and random noise injection

Monte Carlo (MC) methods are commonly used when evaluating 
HSM uncertainty (Elith et al., 2002). Cross-validation, or repeatedly 
subsampling occurrence data into test and training data sets, is a 
common method to evaluate a model’s robustness against its occur-
rence data. Recently, Gould et al. (2014) created visualizations of the 
impacts of spatial uncertainty by injecting random noise into the oc-
currences of Anthochaera paradoxa (yellow wattlebird). Maps were 
created by finding the proportion of pixels in the output that pre-
dicted potential species habitat in 100 models. A similar process was 
used to create visualizations of the impact of uncertainty in climatic 
environmental variables on predicted species distributions (Gould et 
al., 2014).

1.4 | HEMI 1

The first version of the Hyper-Envelope Modeling Interface (HEMI) 
created HSMs using three-dimensional response surfaces for each 
pair-wise combination of environmental variables (Graham et al., 
2013). However, these surfaces were difficult for users to interpret 
and performance issues limited the number of environmental vari-
ables HEMI 1 could support.

2  | HEMI 2

The following were the goals for HEMI 2:

1. Represent the fundamental response of a species to each in-
dividual environmental variable by fitting the model to occur-
rence data and allowing the user to modify the response curves 
to mitigate for gaps in the occurrence data.

2. Resolve the performance issues from the first version of HEMI 
and thus allow a larger number of environmental variables to be 
used.

3. Expand the options to include uncertainty information based on 
error in the occurrence data and environmental variables.

4. Provide sensitivity testing for model parameters and validation 
testing.

The ability of HEMI 2 to model four tree species in North 
America and address known gaps in occurrence data were shown 
by Kimble, 2016. Kimble also evaluated HEMI 2’s ability to inject 
random noise into occurrence data and environmental variables and 
produced uncertainty maps for these tree species. This study cov-
ers the remaining two HEMI 2 goals: to evaluate HEMI 2’s operation 
with synthetic data sets with known sources of uncertainty and to 
evaluate model robustness with validation and sensitivity testing for 
model parameters.

2.1 | HEMI 2’s modeling approach

In the main HEMI 2 window, each environmental variable is repre-
sented by a model graph, which is the software’s representation of 
the species’ response to that environmental variable. The graphs 
cover the range of each environmental variable on the horizontal 
axes. If we define z to be one of the environmental varaibles, then 
f(z) represents the frequency of all the environmental variable values 
(Figure 1, green line), f1(z) represents the frequency of environmen-
tal values at just the occurrence locations (Figure 1, red line), and 
f1(z)/f(z) represents the division the two (Figure 1, blue line) (Elith 
et al., 2011). This division seeks to remove the bias from under- 
or overrepresented environmental values (Peterson et al., 2011). 
Frequencies are represented by histograms with 256 bins and are 
rescaled such that their maximum value on the y-axis is 1 to aid in 
visualizing the histograms together.
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While HEMI 2 can generate models using continuous or categor-
ical variables, this study focused on continuous variables. An online 
tutorial is available that includes the use of categorical variables in 
HEMI 2 (http://gsp.humboldt.edu/HEMI2). Continuous models fit-
ted to each environmental variable are represented by three Bezier 
curves (Figure 2). The control points can be manually adjusted by the 
user or automatically fit by HEMI 2. The first control point (Control 
Point 0) is restricted to the left and bottom sides of the graph. If 
this control point is on the left side of the graph, then our minimal 
environmental condition for this species was not within the sampled 
area. In other words, the environmental niche of the species may 
have been truncated. If this same control point is on the bottom side, 
then all environmental variable values to the left of this point were 
not considered suitable habitat for the species. The same restriction 
applies to the last control point (Control Point 3), but to the bottom 
and right sides, respectively. The remaining control points (1 and 2) 
can move anywhere within the graph as long as Control Point 0 is to 

F I G U R E  1   A screen capture of the main HEMI 2 window with three environmental variables using occurrences for Ohio Buckeye in the 
continental United States. Data for each environmental variable appear in the columns on the left while the final model and its associated 
receiver operator characteristic curve (ROC curve) are on the right. For each environmental variable, each column contains, from top to 
bottom: An image of the variable, a model graph, a ROC curve, a map of habitat suitability based on that variable, and model statistics. The 
model graph contains a green histogram for all the environmental variable values, a red histogram for the environmental variable values at 
the occurrences, and a blue histogram for the red histogram divided by the green histogram. The black line represents the model fitted to 
the specific environmental variable

F I G U R E  2   Each model is defined by four control points

http://gsp.humboldt.edu/HEMI2
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the left of Control Point 1, Control Point 1 is to the left of Control 
Point 2, and Control Point 2 is to the left of Control Point 3.

2.2 | Fitting the model

Models are fit automatically by placing a grid of possible positions 
for the control points over the graph and then trying all possible 
combinations of positions for the control points on the grid, and 
then selecting the positions that provide the maximum likelihood. 
The grid is created with 10 rows by 10 columns over the entire range 
of the environmental variable (x-axis) and from 0 to 1 for the habi-
tat suitability (y-axis). The process is then repeated recursively with 
grids around the selected position. The number of grids and their 
width can be set by the user.

The models are fit to f1(z)/f(z) by default as this compensates for 
small numbers of occurrences because of environmental variable 
ranges that are underrepresented. Similarly, fitting models to fit to 
f1(z)/f(z) will keep environmental variable ranges that are overrep-
resented from dominating a model when they only include only a 
small number of occurrences as. If desired, the models can also be 
fit directly to f1(z).

Maximum likelihood can be computed by multiplying 
 together the probability of each occurrence, given the model, 
together as in:

Where  is the likelihood of the model Θ given a dataset x, p is the 
probability of a specific occurrence given the model Θ, and n is the 
number of occurrences. By taking the natural log of the equation 
above, we obtain the following:

This results in an increasing number of calculations and can be 
time-consuming for large datasets. We can take advantage of the 
histograms in HEMI 2 to reduce the number of calculations with:

where m is the number of bins in the histogram, hj is the environmen-
tal variable value that corresponds to bin j, and Cj is the number of 
occurrences in bin j. p(hj|Θ) is computed by selecting the appropriate 
model value for the bin hj and converting this value to a probability 
by dividing it by the area under the model. The negative of the re-
sult can then be used directly to compute the likelihood portion of 
Akaike information criterion (AIC, Akaike 1974).

For continuous data, each model has four control points with 
the first and last having one degree of freedom and the middle two 
having 2 degrees of freedom. This gives six estimated parameters 
for each model. Since all of the models have the same number of 

estimated parameters, or control points, the model with the maxi-
mum likelihood will also have the minimum AIC.

Using histograms greatly improves the speed of finding the most 
parsimonious model fit and makes the time to fit the model the same 
regardless of the number of occurrences provided. The trade-off 
is a small amount of difference between the histogram-computed 
AIC values and the traditionally computed AIC values from direct 
environmental variable values. This difference is introduced when 
environmental variables are quantized into histogram bins. However, 
since HEMI 2 uses 256 bins, the difference is less than half of a per-
centage point.

HEMI 2 also computes receiver operator curves (ROC) and area 
under the curve (AUC) (Fielding & Bell, 1997) performance metrics. 
Likelihood (effectively AIC) was preferred for fitting the model be-
cause it selects more parsimonious models (Burnham & Anderson, 
2002).

2.3 | Monte Carlo features

Random noise injection, sensitivity testing, and cross-validation 
testing were implemented in a single Monte Carlo feature. Random 
noise can be injected into occurrence data and/or the environmen-
tal variables, and the models can be fitted repeatedly to character-
ize the impact of noise on the models and resulting habitat maps. 
Cross-validation and sensitivity testing can also be run indepen-
dently or with noise injection. This allows the flexibility to evalu-
ate each of the Monte Carlo features independently or to examine 
the combined effects of multiple areas of uncertainty. Outputs of 
Monte Carlo runs include frequency histograms for area under the 
curve (AUC) and AIC values, jackknife results which show the AIC 
and AUC values for each combination of environmental variables, 
and results for each iteration of the model.

When the locations of occurrences are uncertain, random values 
are drawn from a noise distribution specified by the user and then 
added to each occurrence coordinate. For environmental variables, 
values are drawn from a specified distribution and then added to the 
pixels within the environmental variable raster. For regions where 
the uncertainty may change spatially, such as a desert region with 
plateaus and canyons, the parameters for the random distribution 
can be specified with rasters. After noise injection, the occurrences 
are divided into test and training data, the model is fit, sensitivity 
analysis is performed by injecting noise into the estimated parame-
ters for the model (i.e., the control point positions), and then, perfor-
mance statistics are computed based on the test dataset (Figure 3). 
The user may select any combination of steps and set the number 
of iterations for HEMI 2 to execute. When all iterations have been 
completed, summary performance statistics are made available on 
a web page with maps representing the minimum, maximum, and 
mean habitat suitability maps. A map of the standard deviation for 
each pixel of the habitat maps is also provided to evaluate areas 
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where uncertainty is higher than others. HEMI 2 also executes a 
jackknife operation to provide performance metrics for each com-
bination of environmental variables. Charts are also included in the 
output showing the response curves with minimum, maximum, and 
mean values and a 95% confidence interval. Histograms of the log-
likelihood, AIC, and AUC values are provided with charts of the cu-
mulative means and standard deviations for AIC and AUC to help 
determine the number of runs that are required for the model to 
reach a stable state.

3  | CRE ATING HABITAT SUITABILIT Y 
MAPS FROM SYNTHETIC DATA

The first step in our analysis was to show that HEMI 2 could produce 
an accurate habitat suitability map from synthetically created occur-
rence data and environmental variables. Using synthetic data within a 
habitat model has the advantage of allowing the modeler to compare 
the model’s performance with an expected result (McCune, 2006).

To begin, two synthetic environmental variables were created 
with a uniform range to simplify interpretation of model results. 

Each variable represented a measured environmental value that 
ranged uniformly from 0 to 100; where one changed in the Y 
direction (Figure 4a) and the other changed in the X direction 
(Figure 4b).

We adjusted response curves to represent the response of the 
hypothetical species to each synthetic environmental variable, ef-
fectively describing the environmental range of the species. The 
response curve for the “BottomToTop” variable was chosen to be rel-
atively wide while the response curve for the “LeftToRight” variable 
was made to be relatively narrow (Figure 5).

A synthetic habitat map was then produced using the value of 
each corresponding pixel from the environmental values to obtain 
a habitat suitability value from each response curve and then mul-
tiplying the values together. This map represents the environmental 
range of the species. Species suitability to the environment was then 
simulated by uniformly distributing random occurrences across the 
synthetic habitat. Occurrences were removed if their correspond-
ing value for habitat suitability was below a random value generated 
from a uniform distribution from 0 to 1.0 (Figure 6).

We then ran HEMI 2 against these filtered occurrences and 
the original synthetic environmental variables to produce habitat 

F I G U R E  3   Diagram of HEMI 2’s Monte Carlo feature. The process begins at the top with injecting noise into the occurrences and 
environmental data. The occurrences are then split into test and training data sets with the training data used to fit the model against the 
environmental variables. Sensitivity testing injects noise into the model before the final habitat map is created. Then, the test data are used 
to compute performance statistics which are saved for each run. The process repeats a specified number of iterations
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suitability models for each environmental variable (Figure 7). These 
models were used to produce a predicted habitat suitability map 
based on the occurrences (Figure 8a). Subtracting the HSM de-
veloped from the response curves from the original habitat map 
resulted in a maximum difference of 11%. The skewing of the 
response curve for the BottomToTopResponse curves shown 
visible as the difference of 11% toward the bottom of the image 
(Figure 8b).

4  | MODELING THE UNCERTAINT Y OF 
OCCURRENCE DATA

Random noise was injected into the synthetically created occur-
rence locations by randomly altering the original occurrence loca-
tions by a standard deviation of 1% (10 units). We assumed that 
the study area is a small region that is 1 km in each direction and 
contains a microhabitat similar to the one modeled in the previous 

F I G U R E  4   Synthetic environmental 
variables representing a range of a 
fictitious environmental variable with a 
range in the study area from 0 to 100. 
Variables are named “BottomToTop” 
(a) and “LeftToRight” (b) based on the 
direction of change for the variable

F I G U R E  5   The synthetic response curves for the “BottomToTop” variable and the “LeftToRight” response variable with the “best” habitat 
for the species being at approximately 50 with poor habitat at 0 and 100

F I G U R E  6   A simulated habitat map with occurrences added 
based on the probability of survival from the underlying pixel for 
the habitat map



     |  257GRAHAM And KIMBLE

section. In this case, a standard deviation of 1% would be equivalent 
to 10 m, which is typical for a handheld GPS (USDOD, 2008; Wing 
et al., 2005). The model was run 100 times and resulted in a mean 
AIC of 26,423 with a standard deviation of 14. The mean AUC value 
was 0.78 with a standard deviation of less than 0.001. HEMI 2 also 
produces maps of the standard deviation (Figure 9) and response 
curves showing the mean, minimum, maximum, and confidence in-
tervals (Figure 10). The maps can be used to evaluate the spatial 
distribution of high or low confidence within our models, while the 
response curves characterize the variance within our models for 
each environmental variable.

HEMI 2 produced histograms of the AIC and AUC values 
and graphs of the cumulative mean value for AIC and AUC 
(Figure 11) for all model runs. The histograms should approach 
a normal distribution when sufficient runs have been com-
pleted and the cumulative AIC and AUC curves should show 
that these values are stabilizing over time. The histograms and 
performance metrics for each run are available on the HEMI 2 
Web site (http://gsp.humboldt.edu/HEMI2).

5  | MODELING UNIFORM UNCERTAINT Y 
IN ENVIRONMENTAL VARIABLES

Random noise was injected into the “BottomToTop” environmen-
tal variable based on a normal distribution with a mean of 0 and a 
standard deviation of 10. The resulting AUC dropped to 0.76 with 
a standard deviation of 0.003 while the AIC rose to 26,668 with a 
standard deviation of 32. Noise injection resulted in the blurring of 
the edges of the habitat suitability map at the top and bottom of the 

habitat map (Figure 12). The corresponding map of standard devia-
tion shows that uncertainty was associated with the edges of the 
predicted habitat suitability. The distribution of uncertainty could 
indicate a higher confidence in the center of the predicted habitat 
suitability.

The resulting maximum habitat map elongated the habitat in the 
direction of the BottomToTop environmental gradient. This shows 
the maximum potential distribution of habitat suitability among 
iterations for the species and could be used when managers want 
to maximize the conservation range for a species (Jones, 2012). An 
example might be when needing to survey for establishment and 

F I G U R E  7   Modeled response 
curves. The green histogram graph is 
a histogram of environmental variable 
the full area while the red is a histogram 
of the environmental variables at the 
occurrences. Note that the curve on the 
left is skewed to the left because the 
random selection of occurrences based on 
the habitat model happened to be skewed 
to the left

F I G U R E  8   Habitat map generated 
by HEMI 2 from the modeled response 
curves (a) and the result of subtracting the 
original habitat map from the predicted 
map produced by HEMI 2 (b)

F I G U R E  9   Uncertainty map of the standard deviation of 100 
model runs with noise injected into the occurrence coordinates

http://gsp.humboldt.edu/HEMI2
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spread of an invasive species. The minimum habitat map shows a 
shrinking of the habitat in the BottomToTop direction. This map 
could be interpreted as having high confidence that the remaining 
area contains a large quantity of highly suitable habitat for the spe-
cies. This might be used to set up a refuge for an endangered species 
(Figure 13).

The intersection of noise injected response curves extended 
from 10 and 90 to 0 and 100. The minimum and maximum ranges 
were more visible as a result (Figure 14).

6  | MODELING SPATIALLY DEPENDENT 
UNCERTAINT Y IN ENVIRONMENTAL 
VARIABLES

Available environmental variables already contain pixel values 
that represent a simplified mix of an area on the earth. In many 
cases, these homogenized landscapes are further reduced by the  
downsampling of environmental variables (Gottschalk et al., 2011) to 
reduce resolutions when modeling at large extents. Downsampling 

F I G U R E  1 0   Response curve for the LeftToRight environmental variable showing the mean, minimum, and maximum curves for all model 
runs. The 96% confidence interval has little difference from the mean and is covering it in this graph

F I G U R E  11   Graphs showing that the running AUC means (a) and the running AIC means (b) (vertical axis) have effectively stabilized after 
100 model runs (horizontal axis)

F I G U R E  1 2   The mean predicted 
habitat model with normally distributed 
noise injected into the “BottomToTop” 
environmental variable (a) and the 
resulting uncertainty map showing the 
standard deviation of the habitat models 
generated during the run (b)
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consequently amplifies the uncertainty of the pixel values. Some 
landscapes are, however, more variable than others such as moun-
tainous regions (Hijmans et al., 2005). Therefore, if the pixels are 
very large (e.g., 1–4 km), then some individual pixels will represent 
a variety of habitat types (narrow canyons and plateaus) while oth-
ers may be uniform (e.g., a large desert) (Hutchinson, 1991). For this 
reason, the spatial distribution of uncertainty from a simplified land-
scape is dependent on the original variability within that landscape. 
One solution is to obtain higher resolution data for the study area 
and measure the standard deviation for the pixels in the higher reso-
lution raster that overlap with each pixel in the lower-resolution ras-
ter. The resulting data can then be used to inject spatially dependent 
noise into an HSM to create maps showing areas of high certainty 
versus low certainty. If a higher resolution raster is not available for 
a specific environmental variable, another raster may be able to be 
used as the uncertainty. Examples might include terrain roughness 
for temperature variables.

To model the spatially dependent uncertainty in environmen-
tal variables, we created a synthetic habitat map with a relatively 
narrow area of habitat that might represent a narrow canyon. We 
produced 1,000 occurrence points randomly placed within the area 
defined as habitat. The synthetic habitat map was then used as an 

environmental variable with values ranging from 0 (poor habitat) to 
255 (optimal habitat). Two downsampled environmental variables 
were created: one using nearest neighbor sampling and the other 
using an averaging method (Cracknell, 1998).

6.1 | Original environmental variable

The model using the original environmental variable performed well 
with an AUC of 0.97 (AIC of 15,993) and a response curve showing 
the species preference for the high values (near 255) in the original 
habitat map (Figure 15 and X.A1).

6.2 | Downsampled environmental variable using 
nearest neighbor sampling

The next environmental variable was created by downsampling 
the original by a factor of 8 using nearest neighbor selection. This 
produced an environmental variable with breaks in the habitat. The 
break occurred where the nearest neighbor algorithm happened to 
select pixels to the left or right of the actual habitat area. This model 
produced an AUC of 0.78 (AIC of 10,054) and at first may appear 
to be an acceptable model. However, if we examine the response 

F I G U R E  1 3   The maximum predicted 
habitat (a) and the minimum predicted 
habitat (b) when noise is injected into the 
BottomToTop environmental variable

F I G U R E  1 4   Response curves for the BottomToTop variable (a) and the LeftToRight variable (b). The resulting response curve for the 
unmodified LeftToRight variable is as expected while the response for the BottomToTop variable with noise injected shows a wide range of 
response curve values and, for the first time, we can see the 95% confidence interval around the mean response curve
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curve, we see that the habitat suitability has shifted to the left 
(Figure 19.b1). This shows that the model includes unsuitable habitat 
represented by pixels that now contain occurrences because of the 
nearest neighbor algorithm (Figure 16).

To model the uncertainty in the habitat map, we created a 
raster where each pixel represented the standard deviation 
of the neighboring pixels in an 8 × 8 grid. This raster was then 
downsampled by a factor of 8 to match the environmental vari-
able. Noise was injected into the downsampled raster through 
the Monte Carlo feature in HEMI 2. While the inclusion of noise 
fully recreated the original suitable habitat, it also overpredicted 
the original area of the species’ habitat because of the extreme 
standard deviation values used (Figure 17). In a real scenario, 
the standard deviation values would rarely be this extreme. 
However, this exercise shows the value of injecting noise into 
models where the species habitat may be in relatively small areas. 
The real lesson is that the resolution of environmental variables 
must be high enough to maintain even small areas of habitat if the 
model is to be used reliably.

The resulting response curve shows a large variation in the mini-
mum and maximum values of the response curve (Figure 19.b2).

6.3 | Downsampled environmental variable using 
averaging methods

Another approach to downsampling is by averaging the pixels that 
overlap with the resulting pixel in the downsampled image. This 
method has the advantage of providing a mean of the original pixel 
but will also produce new values rather than using the existing val-
ues in the environmental variable raster. For this study, we created 
a raster that was downsampled 3 times using a bilinear averaging 
method (Bolstad, 2008). The resulting model had an AUC of 0.89 and 
a response curve that looked much like the original (Figure 19.c1).

The same standard deviation raster from the previous section 
could then be used to inject noise into the environmental variable 

based on the original distribution of pixels (Figure 18). This resulted 
in an average AUC of 0.64 and a mean response curve that was very 
similar to the one generated with the nearest neighbor downsam-
pling method (Figure 19.c2).

6.4 | Validation testing

Validation testing for the first set of synthetic data was run with 70% 
of the data used to train the model and the remaining 30% used for 
testing. 100 iterations were run and showed the model to be rela-
tively stable, where subsets of the occurrences had a mean AIC of 
8,472 and a standard deviation of 840. The mean AUC was 0.79 with 
a standard deviation of 0.007.

6.5 | Sensitivity testing

Sensitivity testing of the model parameters was executed on the 
first set of synthetic data by injecting noise based on a mean of 
0 and a standard deviation of 10 into the coefficients for the re-
sponse curve for the BottomToTop environmental variable. This 
was accomplished by moving the control points on the response 
curve based on values generated from a normal distribution, 
which produced a mean AIC of 26,912 and a standard deviation of 
852. The mean AUC was 0.79 with a standard deviation of 0.001.

7  | CONCLUSION

With HEMI 2, we were able to create uncertainty maps of the mean, 
minimum, and maximum of habitat suitability by injecting noise into 
occurrence locations, environmental variable rasters, and model 
parameters. This was shown for synthetically created data includ-
ing environmental variables where suitability habitat was under-
represented because of downsampling. The mean habitat suitability 
map can be used as an approximate measure of a species’ potential 

F I G U R E  1 5   The original raster 
defining the available habitat for the 
species (a), the 1,000 occurrence points 
that were added based on the original 
habitat raster (b) and the habitat model 
based on the occurrences and using the 
original habitat as the environmental 
variable (c)
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geographic range, whereas the minimum habitat suitability has the 
potential to provide an informed preservation guide on the most 
valuable habitat for a species. This may be critical when setting up a 
refuge for an endangered species. The maximum habitat map is use-
ful in scenarios where we need to survey all possible areas, including 
small refuges, such as for an invasive species.

The noise injection features of HEMI 2 are valuable for model-
ing uncertainty but different features may be more valuable at dif-
ferent modeling extents. For small extents, injecting noise into the 

occurrence locations will be of value as the accuracy of data col-
lection devices may cause occurrences to change which pixel their 
environmental variables are drawn from. For large extents when the 
pixels are large (i.e., modeling countries or the world at 1–4 km per 
pixel), injecting noise into the environmental variables would be of 
more value as the pixels represent larger areas and thus a greater 
variety of habitat on the ground. Typical GIS software provides the 
ability to find statistics for neighboring pixels when downsampling 
environmental variables.

F I G U R E  1 6   The downsampled 
environmental variable that now has gaps 
because of the nearest neighbor algorithm 
(a) and the resulting habitat model (b)

F I G U R E  1 7   The environmental variable that was downsampled using a nearest neighbor method (a), the standard deviation of the pixels 
around each pixel in the downsampled environmental variable (b), and the resulting model when noise is injected into the model-based 
standard deviation raster (c)
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Using histograms to compute model fit statistics solved the per-
formance problems of the first version of HEMI and allowed for a 
larger number of environmental variables. However, the statistics 
varied slightly from statistics computed using the final results and 
the performance of the interface could still be improved. HEMI 2 
was tested with over 20 environmental variables and performed 
well but this required the computer to have enough memory for all 
the environmental variables to be loaded into memory at one time. 
Accessing the environmental variables from files on disk would re-
move the memory restrictions but would also slow the performance 
of HEMI 2.

Injecting noise into or randomly perturbing data are recom-
mended techniques for uncertainty testing on predictive mod-
els (Jakeman, Letcher, & Norton, 2006). The popular modeling 
software MaxEnt addresses uncertainty with cross-validation, 
bootstrap, and jackknife testing (Elith et al., 2011). Third-party 
applications for MaxEnt complement these built-in tests with di-
rect model comparison (ENMTools; Warren, Glor, & Turelli, 2010) 
and random noise injection (Gould et al., 2014), but do not provide 
sensitivity testing of model coefficients or a combination of all of 
these approaches in a single HSM. HEMI 2 is the first software 
package to provide a rigorous suite of uncertainty tests that in-
clude noise injection, cross-validation, and sensitivity testing, and 
provides the computational strength to combine all of these in a 
single HSM.

The Monte Carlo methods used with HEMI 2 gave us much more 
confidence in our models than previous approaches. Because of this, 
the noise injection and validation Monte Carlo features have also 
been implemented for the popular SDM modeling software MaxEnt 
(Phillips, Dudik, & Schapire, 2004) and are available in BlueSpray.

F I G U R E  1 8   The environmental variable that was downsampled using a bilinear method applied three times (a), the standard deviation of 
the pixels around each pixel in the downsampled environmental variable (b), and the resulting model when noise is injected into the model-
based standard deviation raster (c)

F I G U R E  1 9   On the left are response curves based on the 
original environmental variable (a1), the downsampled map using 
nearest neighbor downsampling, (b1) and using an environmental 
variable that was downsampled 3 times using bilinear sampling (c1). 
Note that the response curve for the nearest neighbor data has 
shifted to the left because of the occurrence values that appear 
on pixels that contain values that are no longer representative of 
the species’ habitat. On the right are aggregate response curves of 
100 models with spatially dependent noise based on the standard 
deviation of the neighborhood around each downsampled pixel for 
nearest neighbor sampling (b2) and for bilinear downsampling (c2)
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An area of concern within HEMI 2 is that if the user provides a 
data set with multiple occurrences per pixel in the environmental 
layer, the model will shift to representing abundance and could in-
troduce bias if the occurrence data are biased. Another concern, and 
one of the most controversial topics within HEMI 2, may be its abil-
ity to allow the user to move the control points of response curves. 
This has been shown by Kimble to be of value in some situations but 
should only be practiced if there is existing knowledge that speci-
fies the species’ response to each adjusted response curve. HEMI 
2, like all modeling software, is just a tool and relies on the user to 
make sound modeling decisions. Our goal was to provide a full suite 
of uncertainty tools that will increase accessibility to modelers and 
to provide a framework that can be later built upon. We hope that 
this framework and those currently available will help to provide the 
basis for upping the momentum of making uncertainty testing a fun-
damental component of habitat suitability modeling.

8  | SOF T WARE AVAIL ABILIT Y

HEMI 2 was implemented within BlueSpray which is a geographic 
information system (GIS) created by SchoonerTurtles, Inc. BlueSpray 
is available from Humboldt State University at http://gsp.humboldt.
edu/isamm/BlueSpray.html. A Quick Start tutorial is available for the 
modeling feature, HEMI 2, by clicking the help button (?) in the main 
HEMI 2 dialog. Additional tutorials and examples of HEMI 2 HSMs, 
including all model runs from this study and a comparison study with 
MaxEnt, are available at http://gsp.humboldt.edu/HEMI2.
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